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NONPARAMETRIC ESTIMATION OF THE PROBABILITY OF
A LONG DELAY IN THE M/G/1 QUEUE

BY

D. P. GAVER
P. A. JACOBS

OPERATIONS RESEARCH DEPARTMENT
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5000
1. Introduction

The application of probability theory to a wide variety of congestion
problems has been well catalogued in many papers. Most of the elegant
solutions obtained are in somewhat implicit form, being presented as
functional equations, or, frequently, as integral (Laplace) transforms,
generating functions, and sometimes as combinations of the above. The
results obtained naturally appear in terms of component distribution
functions and stochastic processes (renewal, Poisson etc). Only rarely are
issues addressed that arise when actual data is to be used as a basis for
inference from the models; however, see Cox [1965].

In this paper we consider the nonparametric estimation of the
probability of a long customer delay in an M/G/1 system, given a known
Poisson arrival rate A and observations of independent service times from
the service distribution, presumed unknown. Although the approach and
results are given concretely for the M/G/1 system, they apply more widely.

To be specific, consider a single server system approached by a
stationary Poisson (i) traffic with A known. Service times, X are
independent identically distributed with unknown distribution function FX;

assume AE[X] = p < 1. Let observations of the service times be all that is

...
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known about F; denote these by X; Xos ooey X . The objective is to supply
nonparametric estimates, and error assessments thereof, of the probability
of a long delay experienced by an arriving customer.

It is well known that if W(t) is the virtual waiting time in the M/G/1

queue and p < 1, then the moment generating function

E[e™] = 1im g[e¥ ()] (1.1)

trm

gre*] - A
sE[X]

- (1-p)[1 = pA(s)]™

- (1-p) [1 w ]

where A(s) is the moment generating function of a distribution H. If A(s)

exists for 38 < s > 0, then there will be a smallest real zero s = ¢ > 0

0’ %o
of the denominator of (1.1) which can be used to show that

P{W > w} ~ D(k) e <", W o, (1.2)

We will always assume this is the case.

One way of establishing (1.2) is to introduce

SW ®
ELE——gl—ll - I PIW > w} e Ydw (1.3)

0

¥(s) =

into (1.1) and to rewrite in the form

¥(s) = p[A(s)S- 1]

+ pA(s)v¥(s) (1.4)
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which is equivalent to the terminating renewal equation, see Feller [1966]

p. 362,
_ _ W
F (W) = PLW > w} = pH(Ww) ¢« p I P{W > w-x} H(dx) (1.5)
0
where
W
HW) = Eiéf%jll dy. (1.6)
0

ow

Following Feller, introduce ?w#(w) - Fw(w) e, O real and positive, into

(1.5) to obtain

w

= # =i =i
F .l ) = p H (W) + J F' (w-x) pe®*H(dx). (1.7)
O 1
Choose 6 = « so that !
|
|
-] -]
[ 0e¥H(dx) = | i (ax) = 1 (1.8) |
0 0
yielding a standard renewal equation for fﬁ. From the key renewal theorem, _
it follows that '
TN EI
/ ‘\‘ D
Qu\::“':‘ o ]
=t .= kw (k) RN R
lim F (W) = lim Fylwle ™ = ) N (1.9)
W® wWr®
Avatlability Codes
] f?xvéil ardor
-3- ) Special
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BRI,
-y where
P agd
©
.n“ c(k) = p j e X H(x)dx (1.10)
K,
e 0
o and
et -
' m(k) = p J xe** H(dx). (1.11)
8 -
2% 0
1)
o Summarizing
1 %0
t"gr
‘q? P{Ww >t} ~ c{x) e Tkt t »+ = (1.12)
A m{«)
Y
o
o
1ﬂﬁ where « is the positive solution to the equation
o
A
aMe _1
ot re [o(8) - 1] =1 (1.13)
¥
o with
o o(8) = ELe®1. (1.14)
W
Sl
t; In section 2, a nonparametric estimate, k, of x is studied which solves
255 equation (1.13) with the empirical moment generating function replacing ¢.
]
)
abg This estimate is related to an estimate studied by Stigler [1971] in the
K
! context of estimating the probability of extinction for branching processes.
I « 1s shown to be a consistent estimate of « having a distribution in the
‘ol

domain of attraction of a stable law. Under certain conditions, a central

limit theorem for x can be obtained.

T
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In section 3 a nonparametric estimate of

p(t) = e (1.15)

is given.
In Section 4, some results of simulation studies of the estimates of «x

and p(t) are presented.

2. Nonparametric Estimation of the Exponent « of the Probability of a

Long Wait

Assume for the remainder of the paper that A=1 is known. Let

X ey xn be the observations of the service times. A non~parametric

-'D
estimate of the moment generating function of the service time distribution

is

~ 1 n 9)(1
o(8) = = Y e . (2.1)

i=1
The sample equivalent to equation (1.13) is thus

1 = e"[;(e)-1]. (2.2)

At 6 = 0, the RHS of (2.2) is x which is less than 1 if

X, + x2 + ... v X
X = LS 1; the data can only be analyzed for a stationary

model under this assumption, which will be made in what follows. Further,
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W (2.2) has a unique solution, «, which is an estimate of x. A three-term

: Taylor's expansion of the RHS of (2.2) about 8=0 gives an initial estimate

W e =201 - %] (D7 (2.3)

[ AR —

where xk a % [x? + ..t xg], the kthsample moment. Since

A

is an upper bound for k. Equation (2.2) can

7
s,

0" [o(0) - 1] zi+%e?, K

-
Pd

H

be solved via search or Newton-Raphson iteration to obtain the estimate «.

.-
v

~

We will now present‘asymptotic results for the distribution of x as the

522

i ‘:}“-
o
f;:; sample size n + », By assumption, if X is a random variable having the
D '\‘.u" L
X ’Q service time distribution, then E[eB x] < » for some B' > ¢ > 0. Thus,

there is B > ¢ such that for all 0 < b s B

TR X J - o
“y s
-, X
X _‘h,
S W
w ¥ s £ &

g

E[x"e?%] ¢ . (2.4)

)
FdL It follows from the monotonicity of the RHS of (2.2) that

Ple > B} = P{Q(B{)B -1 [¢(B)B- 11 4 - [¢(B)B- 11}

Ir - P{;(B) - ¢(B) < B[1 - L (B; - ’J]}. (2.5)
§,0
i

Q- Since ¢(@) is a monotone ‘function and B > «, [1 = 8—1[¢(B) -1]] is negative.

S Thus, by the strong law of large numbers

(] -6-
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J lim P{; > B} = 0. (2.6)

nor«

X Let

£8) =1 - 0 '[o(e) - 11. 2.7

)
J
-: Expand f(x) in Taylor's series about the solution x of (1.13). Since
",

¥ \ - -

W f(x) =0,

~

0 = £(x) + (x=x) £'(x) + : (e-<)2 £1'(6e) (2.8)

) for some 3, Thus

o : A PR -1
- e ow =fl) )+ 5 (c-x) £''(BK)] (2.9)

NN

= — a;-(Xe‘X . X 1] = 8 < 0. (2.10)

L - &

LA S
Ny

"« .:w . Large numbers

2
H a 8

~e
»

simf e, = (2.11)

r.oe®

O,

4
>

vim £f'(x) = B <0 (2.12)

»
P
Fl
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with probability 1. It follows from (2.6), (2.9), (2.11) and (2.12) that «

converges in probability to x as n + ®», Thus, « is a consistent estimate of

Ke

2kX

If Ele ] < =, then

Var[;(x)] a :; Var[eKX] = % r2. (2.13)

3|

By the central limit theorem

73 joo

ST (% - ) E /T 0001 10 (0 + 5 () £100800 7 (2014

is asymptotically standard normal as n » =,

2KX] = o,  then the distribution G of e'<X is in the domain of

If Ele
attraction of a stable law with index 1 < a < 2, see Feller [1966]. Let

{an} be a sequence of numbers such that

a
J N x2 G(dx) » 1 as n » =, (2.15)

0

WlS
3N

The normalized random variable

- n kX
n n. 1 1
)

i][f'(() + 15(.< - x) f''(8x) ] (2.16)

n n {=1
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is in the domain of a stable law with index a, where 1 < a < 2 is such that

y -
J XZG(dx) ~ y2 @ L(y) where L is a slowly varying function.
0
To summarize, we have the following result.
PROPOSITION a. x is a consistent estimate of «x.

b. 1If E[e <%

asymptotically normal.

~

-

c. If E[ezKX] s o then x-«x is in the domain of

attraction of a stable law.

] < =, then the distribution of x-k is

We will suppose for the remainder of this section that the service time

distribution is exponential with mean % > %. In this case,
assumption),
« = -1
X 2 -1
var(e“"] = w(u-1)° (2-w) ;
and
E[f' ()] = -1,
From the central limit theorem (2.14)
° rye -1 K+ 1
nvar(x) -~ (E) = p(2-u) = T
_9_

P T A T,
pl ‘. ‘(t’-"' Ql- J""

(since A=1 by

(2.17)

(2.18)

(2.19)

(2.20)




Therefore, if g(x) = (1-x2)1/2 -1 - sin—1(-x), then

nVarlg(x)] - [g'(x)Pnvar(x] - 1.

Thus, g is an asymptotically variance-stabilizing transform of x. The

~ -

simpler related transformation 1n(1+k) is used in the simulations of «x

reported in Section 4.

3. A Nonparametric Estimate of P{W > t}

The asymptotic analytic result is

P(W > t} - ;E:; e <Y = p(t) (3.1)
as t + @
where
clk) = I <Y J P{X > x}dx dy (3.2)
0 y
wx—zp{xd}+1— w[ KXy - kx - ("")2] P{Xedx)}
a f > edx — I e x 5 edx
0 0
and
m(k) = [ xe“* P(X > x} dx (3.3)
0

A L RN PG O |
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A R4 ® ©
N {J kxe ™ P{Xedx} - J X -1 P{Xedx}}
0

| ]
|
O

j x? P{Xedx} + % K j x® P{Xedx}
0 0

nj—

‘.' =

WY Y @«

N + f (kx = 1) R(x) P{Xedx}
'I‘QE’ 0

W8 where

e R(x) = [&X = 1 = x - LX) (3.4)

Wty An estimate of P{W > t} is

|9'.| . A A ~

p(t) = Sl o=t (3.5)

' m(x)

1
- .

oy where x is the positive solution to equation (2.2);

KN A A

Wi cl) = L3 « R (0); (3.6)

| —

k X3 + R.(k); (3.7)

n .
Pole -t -kx, - —— ) (3.8)

e -11-
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o Ry(x) = (= B () + x 121 x. (e D=1 - wx, - — ). (3.9)

The forms of ;(;) and ;(;) are chosen for the numerical stability of the

3 ratio c(x) m(x) .

ez;: In the remainder of this section we will assume the service time

‘; distribution is exponential with mean % > % and x < 1. In this M/M/1 queue
)

case, it is well known that

A
+dC
%} p(t) = % expi-(u-1t} = (1 + )7 &™<" (3.10)

e from (2.16).

58 We will now motivate a transformation of p(t) which is used in the

simulation studies. Let Y = 1n(1+k), then x = eY - 1 and

k" Y

35 p(t) = exp{-Y - [e - 1]t}. (3.11)
4

”) Let

- , h(Y) = 1n p(t) = = ¥ - [e' - 11t (3.12)

~

and Y = 1n(1 + x). A Taylor's expansion yields

s )

A

.4

SHS

nVar[;] = nVar{ln(1 + ;)] (3.13)

= n TT%:TT Var{x]
s s DY - 1)

4

<8

<A

2,-1

]

" A4S
~ Rl
P+ 54
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i from (2.20). Hence,

t
K
,‘ ~
‘ Y, 42 2.-1
b nVar[h(Y)] = [-1 -e't1° [1 - (e' - 1°]
[
c’. Y -
5 O R R [ A A I CUE R LS R (3.14)
o
It follows from the definition of h(Y) that
L]
Y
: 2 Y 2,1
nVar[h(Y)] = [-(1+t) + h(Y) + YI°{1 -~ (e - 1)°} . (3.15)
,v‘.
3
" y
:5 Since 0 <K x =e - 1< 1, 0< Y<K 1ln 2. Thus, for t large
5
‘ - >
e nVar[h(Y)] = [-h(Y) + t] (3.16)
‘
o«
.'Q
. which suggests that the transformation In(t - 1ln p(t)] will tend to
X -
yt stabilize the variance of p(t), at least for exponential service time
B~
!i distributions.
a
A 4, Simulation Results
;ﬁ ’ In this section results are presented of a simulation experiment to
{; study small sample behavior of the estimates of « and P{W > t}. All
L)
21 simulations were carried out on an IBM 3033AP computer at the Naval
[y
153
s\ Postgraduate School using the LLRANDOM II random number generating package;
L)

Lewis and Uribe [1981]. 1In each replication 50 exponential service times

are generated. If the mean of the service times is larger than 1, equation

o s '1"'
o A

(2.2) has no positive solution. 1In this case, another 50 service times are

Pl
-
>

i
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generated. The estimates, ; of (2.2) and ;(t) of equation (3.5) are
computed for each replication.

Standard errors of the estimates are estimated in two ways. One is the
appropriate asymptotic variance expression. The other is the jackknife
procedure.

The jackknife is a procedure originally introduced by Quenouille for
bias reduction [1956], and adapted by Tukey [1958] to obtain approximate
confidence intervals. éuppose interest is on a parameter 8 (e.g. x or p(t))

~

that is estimated by 6 using a complex calculation from data x1,...,xn. The

idea is that of assessing variability by recomputing 8 after removing
independent subgroups of data of equal size, and then using the recomputed 8
values to estimate a variance which is in turn applied to state a standard
error or a two-sided confidence interval that contains the true 6 with
specified confidence. A few more details follow; for more, see Efron [1982]
and his more recent work, or Mosteller and Tukey [1977]. The actual
calculation involves splitting the n data points into g disjoint groups of
size m; n=mg. In our simulations g is always 10. Then calculate g(—j)'
j=1,2,...,8: the estimate of 6 based on a reduced data set that omits the
jth group. In the simulations, the first group is the first five
(unordered) service times; the second group is the second five service

times, etc.

Now Tukey computes pseudo-values

Yy = ge ~ (g-1) e(_J.)

-4~
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which are treated as independent. Tukey recommends ref~rring the mean of
the pseudo-values ; to Student's t with g-1 degrees of freedom to obtain
confidence limits.

In the jackknife procedure to estimate x, it is sometimes the case that
a positive solution of equation (2.2) does not exist for the data set that
omits the jth subgroup because the mean of this reduced data set is larger

- -~

than 1. In this case, K(-j) is set equal to the smallest of the (i

's that
i)

could be computed for the sample considered..

Similiarly, in a jackknife procedure to estimate p{(t), it is sometimes

the case that either K(_J) does not exist or p(_j)(t) exceeds 1 for the
reduced data set that omits the jth subgroup. In this case p(_j) is set

equal to the largest of those p(_i)'s that could be computed and were less

than 1.

4.1 Results of a Simulation Experiment to Estimate «

In this subsection results arz given of a simulation experiment to

estimate x. For each replication, three different estimates of « were

computed. Estimate I, x_, is computed by numerically solving (2.2) by

ID
search starting with the initial value Ky of (2.3). Estimate II, «x

~

II

is obtained by jackknifing x using ten subgroups; the mean of the pseudo-

values is the estimate. Estimate III is obtained by jackknifing ln(l+x)

using ten subgroups; the inverse transform of the mean of the pseudo-values

ey - 1 is used as the estimate of x. In the cases of Estimates Il and III,
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if the estimate is negative, it is set equal to 0. For each estimate, the

average bias

1 5%0 -
B & — (¢, =x)
500 =1 i
and the relative mean square error
) 500 Ky K 2
Rel MSE = 550 ”
i=}

are computed where

Kk = pu-1

in the case of exponential service times with mean % <1,

Results of the simulation appear in Table 1. All of the estimates have
about the same relative mean square error. Jackknife estimates II and III
have smaller bias than the straightforward estimate I. Jackknifing ; itself
rather than ln(;+1) gives the smallest bias. As % increases all the
estimates have increased relative mean square error.

A simulation study was conducted to compare the performance of
different confidence interval procedures. For each replication three 80%
confidence intervals were constructed. Interval procedure I is a normal

-~

confidence interval which uses the straightforward estimate of «x, « as the

II
point estimate; the estimate of the variance is the data version of the

asymptotic variance in the central limit theorem (2.14);

R R SRR s rawv o
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. a KX

1
o(x) =~ T e !

n

i
-~ 1 Kxi le
B ==1e -1 - kx.e
Ny

(4.1)

(4.2)

(4.3)

with « = x_ in this case. The 80%-point of the normal distribution is used

I

to construct the interval. Limits that are negative are set

equal to O.

Confidence interval procedure II is a jackknife confidence interval

which jackknifes x and uses the 80% point of the student t-distribution with

9 degrees of freedom. Limits that are negative are set equal to 0.

Confidence interval procedure III is a jackknife confidence interval

-~

wnich jackknifes ln(x+1) and uses the 80% point of the student

t-distribution with 9 degrees of freedom to give a confidence interval for

In(k+?'). The inverse transformation of the endpoints of the
an interval for «x; limits that are negative are set equal to

Results of the confidence interval simulation appear in
Reported are the number of 500 intervals that cover the true

<, (C); the number of the 500 intervals such that the entire

interval gives
0.

Table 2.

value of

interval lies

below «, (B); and the number of the 500 intervals such that the entire
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interval lies above the true value, (H). The average length of the
confidence intervals is also given.

The number of intervals that cover the true value of « for procedure

III is within .80 + (1.96)/ 5(‘)0 (.2)(.8) = [.765, .835]. All but one case

of the normal confidence intervals of procedure I are outside this range.
All but one case using confidence interval procedure II are inside this

range. The average width of confidence intervals for procedures II and III

are about the same. Thus, although the jackknife estimate «

more biased than «

II1 is a little

II,the coverage of the jackknife confidence interval for

-~

Krpp appears to be somewhat better than for jackknife confidence interval

procedure [I.
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TABLE 1

Bias and Mean Relative Square Error

for Estimates of «

Distribution Exponential Exponential Exponential Exponential
106 .ot l.o.8 Lo
u u Y
Estimate Kk = .6667 K = 4286 k = ,2500 x = 1111
B Rel MSE B Rel MSE B Rel MSE B Rel MSE
(S.E) (S.E.) (S.E) (S.E.) (S.E) (S.E.) [(S.E) (S.E.)
-B B B B
(;) (;) (;) (;)
I 147 .2350 0557 .3292 .0057 .6026 .0865 2.400
(.014) (.021) (.011) (.029) (.008) (.054) [(.0067) (.2134)
[.172] [.130] [.023] (.779]
11 .0219 .2256 .0067 .3095 .0102 .5382 .0469 1.785
(.014) (.019) (.011) (.025) (.008) (.o46) |(.0063) (.161)
[.033] [.016] [.041] [.u22]
III .0533 .2212 .0160 .3073 .0268 .5576 .0608 1,997
(.014) (.019) (.011) (.027) (.008) (.049) [(.008) (.177)
(.080] [.037] f.1072] {.5472]
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Confidence Intervals for

Table 2

Coverage Width
Procedure I II ITI I II III
B (C) H B (c) H B (c) H AV AV Av
Distribution| ¥ (%) ) (%) ) ] (%) % (S.E.) (S.E.) (S.E.)
Exponential
‘:- 0.6 45 (363) 92 | 38 (408) 54 |29 (395) 76 | .6402 .8089  .7752
Kk = 6667 9 (72.6) 18.4} 7.6 (81.6) 10.8] 5.8 (79) 15. .005) (.0124) (.0114)
Exponential
‘;- 0.7 49 (380) 71 | 50 (409) 1 |42 (399) 59 | .5279 .6255  .6157
c = .4286 9.8 (76) 14,21 10 (81.8) 8.2 [8.4 (79.8) 11, L004)  (.009) (.009)
Exponential
‘:- 0.8 28 (407) 65 | 38 (420) 42 |33  (413) 54 | .u4u1  .4831  .4903
¢ = .2500 5.6 (81.4) 13 7.6 (84) 8.4 |[6.6 (82.6) 10. .005) (.008) (.008)
Exponential
‘:- 0.9 1 (429) 70 | 54 (408) 38 |52 (392) 56 | .3733 .3763  .3923
k= 1111 .002(85.8) 14 [10.8 (81.6) 7.6 [10.4 (78.4)11. .005) (.009) (.009)

4.2 Simulation Results for Estimating p(t)

In this subsection, results are given of a simulation experiment to
estimate p(t).

Estimate I, pI(t) is computed for each replication using formulas (2.2),

------

(3.5) - (3.9). If pI(t) exceeds 1, it {s set equal to 1.

For each replication three eatimates of p(t) are computed.
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There are (at least two) possible ways to implement a jackknife
procedure to estimate p(t). Estimate II is obtained by jackknifing ln(x+1);
an estimate of « is obtained by the inverse transformation of the mean of

the pseudo—-values ;LK'

- S

K11 is used in formulas (3.5) - (3.9) to obtain the estimate pII(t). 1f

;II(t) exceeds 1, it is set equal to 1.

Estimate III is obtained by jackknifing ln(t - 1ln ;(t)]; if ;(t)
exceeds 1 for a reduced data set that omits the jth subgroup, the estimate
of 1n[t - 1ln ;(t)] for that reduced data set is put equal to the smallest
estimate that could be computed from the other reduced data sets. An

estimate of p(t) is obtained by inverse transformation of the average of the

pseudo-values ;LPR;

~ —;
t LPR
pIII(t) =e e .

If pIII(t) > 1, it is replaced by 1.

For each estimate, the average bias

500 .
N [p, (t) - p(t)] (4.4)
i=1

B =550

and the relative mean square error
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° 2
, 500 [pi(t) - p(t)]

Rel MSE = =5 121 1) (4.5)
are computed where
p(r) = L 7w = 1T (4.6)
o
The results appear in Table 3.
TABLE 3
Mean Bias and Mean Relative Square Errors
for Estimates of p(t).
TDistribution Exponential Exponential Exponential
L6, Tet L7, me2 1.8, 13
u H !

p(1) = .3081 p(2) = .297 p(3) = .3779
Estimate B Rel MSE B Rel MSE B P2] MSE

(S.E) (S.E.) (S.E) (S.E.) (S.E) (S.E.)

I .004 .138 .024 .328 .00% . 326

(.005) (.009) (.008) (.026) (.010) (.020)

11 .04l 216 .060 409 .054 L 436

(.006) (.020) (.008) (.032) {(.011) (.031)

III 0138  .137 040 . 354 .034 . 397

(.005) (.009) (.008) (.030) (.011) (.029)
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3 The entries for estimate II in Table 3 suggest tnat ~ . 1.0 v
o
f then computing the estimate of the probability using *n- & --
i of x increases the bias and relative mean square .rror

>
> pI(t) the straight-forward estimate. The entrics ¢

v the jackknifing in{t - 1n p(t)] gives about <re =m-

& error as the original estimate pI(L) but Inore e

o ) . )
;: A simulation experiment was conductec to . .- ..

3

confidence intervals obtained by jackknifing .-

ot simulation replication, the average and varia:n

- computed;

i 10

yo= =1 v

- J 10 31 {1
; " 19 - )

' 02 =3 ) (y, . -y)"

J 9 j=1 (i
An 30% confidence interval for ln{t - 1ln p(t)] is

N

/

D _ 1

3 (LPL,LPV] =y + (1.383) v ool

N J — J

4 Y 10

} where 1,383 is the 80% point for a Student's t-distribution with 3 degraes
jt of freednm. The limits of the interval are inversely transformed to give 2
-

) 2onfidence interval for p(t).

o

»

J-

v

*-

.‘l

&’

Cd

’

1] _23_

g

R v

'

q

)

"

.‘ - . - . - . - . - - - - - - - -
O™, ‘u_.*- RS AN SRy - T L 2




et o

o
P

i P v
LL -4
=]

-

'
» l-l

N
E

N

.l
»

X'
V5 e
IR TN

.
'8

v ] i
»

LAY

it

" ) - DAE L L/ ) “n R
’t‘-"a*":. QU D O LR OO SN YR L O O s TR B

TRTRTTVTPO TR F WU WY FW S ETNEE TS WNWN WS W wes o™ W @ s e -

LPV

PL = expit - e '}

and

LPL}.

PV = exp{t - e
If a confidence limit exceeds 1, the limit is set equal to 1.

Results of the confidence interval simulation appear in Table 4.
Reported are the number of the 500 intervals that cover the true value
p(t) (C); the number of the 500 intervals for which the upper limit PU is
below p(t) (B); and the.number of the 500 intervals such that the lower
limit PL is above the true value (H). The average width of the confidence

interval is also given.
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: : Table 4.
B 80% Confidence Intervals for p(t)
&rﬂ Coverage Average Width
o
.‘-’
e B C H (standard error)
('.|‘
AR $3) (1) $3)
"'
et
'ﬁj Exponential
1)
3‘ %-.6. T=1 © 56 415 29 .325
by
p(1) = .3081 (11.2) (83) (5.8) (.006)
!"
"C
\\}c Exponential .
R 1.7, 12 52 408 40 477
.-'l‘:‘ H
1 p(2) = .2971 (10.4) (81.6) (8) (.009)
- Exponential
k" lu =.8, T=3 54 412 34 .597
p(3) = .3779 (10.8)  (82.4)  (6.8) (.010)

The coverage of the confidence intervals is within

2 SR . |
: .80 = (1.96) —~—so5 " .80 + .,035 = [.765, .835]. The width of the

) . 1,
interval increases as ; increases.

N 4,3 Simulation Results for Estimating p(t) for Mixed Exponential Service

N Times
In this subsection, results are given of a simulation experiment to

sR: estimate p(t) = P{W>t} in the case of mixed exponential service times. For

5;:: -25-
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each replication 50 random numbers are generated from a mixed exponential

distribution with

1 1
P{S>t} = 5¢ + 5 , t>0.

The estimate ln[t - ln;(t)] is jackknifed with ten subgroups as before where |
g(t) is given by (3.5) and 80% confidence intervals are constructed. Each
simulation has 500 replications.

The asymptotic distribution of the virtual waiting time, W, can be
found by inverting the moment generating function (1.1); it is a mixture of

two exponential random variables.

Table 5 reports results of three simulations.

Case I: 1. .30 L. .90, T=1,
¥ H2
E(S) = 0.6, P{WwT} = .3u404;
1 1
Case II: - = .35 - = 1,05, T =2,
v} u
1 2
E(S) = 0,7, P{WwT} = .3459;
|
|
! 1 |
Case III: - = 40 - = 1,20, T = 3,

Hy Ho ‘
E(S) = 0.8, P{WwT} = .4333;
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For each simulation, the mean bias and relative mean square error (4.4)

and (4.5) are computed with p(t) = P{W>t}. Confidence interval coverage and
average widths are also computed.

Both cases II and III each had one replication for which using all the
data to compute the estimate ;(t) of (3.5) resulted in a value larger than
1; these two replications are not counted in the summary statistics in Table
5.

Comparison of the mean biases and mean relative square errors of Table
5 with those of estimate III in Table 3 shows that they are about the same
for both service time distributions. The coverage of the confidence
intervals in Table 5 is-again within [.765, .835]. However, the average
length of the confidence intervals for the miked exponential cases are

larger than those reported in Table 4 for the exponential distributions.

_27_

A.'->? -...P."‘--.‘.“ » 'R'\\f‘l“ K ha® 0 ™ RN TR NN - LY'E, LIS . h R .v-(" - ,-fy.x.--"-.-¢
N A O X A L !'\‘.'. -.. A 02.1.,'.'.3\ > O .i‘ ..!’l ?'a‘. A"O‘!'l.\ 0’.’0‘»’!10 M N;‘Q(ﬁwdcgd!&d mm\' >



e,
X
,C
:‘.
{ﬁ Table 5
(A3
. Results for Estimates of P{W>t}
jk for an M/C/1 Queue with Mixed
& Exponential Service Times
]
¥,
Y
&
! . ) . Confidence Intervals
. Distribution Estimate Coverage Width
:3 Bias Rel MSE B (C) H Average
\‘-.
- Case (s.B) (S.E) ) 3 (8 3 (S.E.)
e
I .024 172 58 (407) 35 .392
::' (.006) (.013) | 11.6 (81.4) 7 (.007)
4
5
R 11 .040 .38 63 (408) 28 .500
U
] (.009) (.028) 12.6 (81.4) 5.6 (.010)
i
9
50 III 022,350 | 54 (M11) 3M 637
- (.011) (.021) | 10.8 (82.4) 6.8 (.011)
1y :
L)
O\
n
152
t“} 4.4 Simulation Results for Estimating P{W>t} for Gamma Distributed Service
7) Times
¥
',i In this subsection, results are given of a simulation experiment to
<5
:55 estimate p(t) = P{W>t} in the case of gamma service times. Each experiment
)
f ) has 500 replications. For each replication, 50 service times are generated
1;: having the distribution of the sum of two exponential random variables each
(L
15 ~
;ﬂ: having mean %. The estimate 1n{t - 1ln p(t)] is jackknifed with ten
v subgroups as before where p(t) is given by (3.5) and 80% confidence
:f intervals are constructed.
v
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The asymptotic distribution of the virtual waiting time, W, can be

found by inverting the moment generating function (1.1);
two exponential random variables.

Table 6 reports results of three simulations.

Case I: % - .30 T,
E(S) = 0.6, P{WT} = .2508;

Case II: % = ,35 T=2,
E(3) = 0.7, P{WT} = .2232;

Case III: = .40 T =3,

E(S) = 0.8, P{WT} = .2950;
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o Table 6
L able
Results for Estimates of P{W>t}

. for an M/G/1 Queue with Gamma

".': Service Times
b . . Confidence Intervals

., Distribution Estimate Coverage Width
'. Bias Rel MSE B (c) H Average
C

o e (S.E) (S.E)) % (%) 4% (S.E.)
4,

'y I .007 110 61  (401) 38 227

ol (.004) (.007) 12.2 (80.2) 7.6 {.003)
o~ 11 L0167 .299 61 (397) W2 .328
o (.005) (.026) | 12.2 (79.4) 8.4 (.007)
£
A
" III .0251  .390 62 (407) . 490
ay

X (.008) (.034) | 12.4 (81.4) 6.2 (.010)

x
o
j\ The mean blas and relative mean square error are about the same as for
Y

"\.
i. tre exponential and mixed exponential service time distributions. The
J confidence interval coverage is once again within [.765. .835]. The average
A‘
_ widtn of the confidence intervals is smaller than the widths in the

o

:',- exponential and mixed exponential cases. This is to be expected since the
L gamma distribution has a shorter tail than the exponential or mixed |
._'~: ‘
e exponential distribution.
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